32-Bit Proprietary Microcontroller

LSI Network Security System

MB91401

■ DESCRIPTION

The MB91401 is a network security LSI incorporating a Fujitsu's 32-bit, FR-family RISC microcontroller with 10/ 100Base-T MAC Controller, encryption function and authentication function. The LSI contains an encryption authentication hardware accelerator that boosts the LSI's performance for encryption and authentication communication (IKE/IPsec/SSL) to be demanded further.
The MAC controller has a packet filtering function that reduces the load on the CPU for an increasing amount of packet processing. In addition, the board has the External interface for high-speed data communication with various external hosts, USB ports as general-purpose interfaces, and various card interfaces.

- FEATURES

- Encryption and authentication processing by hardware accelerator function

The LSI performs processing five times faster than by the conventional combination of encryption/authentication hardware macros and software or about 400 times faster than by software only. In addition, CPU processing load factor to be involved in the encryption and the authentication processing can be decreased to $1 / 5$ or less. Also, the LSI uses the embedded accelerator to execute that public-key encryption algorithm about 100 times faster than by software processing, which generally puts an extremely heavy load microcontrollers.
(Continued)
PACKAGE

(BGA-240P-M01)

- For DES-ECB/DES-CBC/3DES-ECB/3DES-CBC mode*
- For MD5/SHA-1/HMAC-MD5/HMAC-SHA-1 mode
- DH group: for 1 (MODP 768 bit) /2 (1024 bit)

For the encryption/authentication macros, a software library is available by contacting the Fujitsu sales representative as required.

* : Encryption function (DES/3DES)

Method to encrypt, and to decrypt plaintext in 64 bits with code and decoding key to 56 bits. (3DES is repeated three times. The key can be set by 168 bits or less.)

- Packet filtering function

The internal feature for L3/L4 packet filtering lets specific data pass or halts them based on address (IP/MAC address) settings. Moreover, the function (multicast address filter function) to receive the data is provided in case of the multicast address registered besides my address, too.

- IEEE 802.3 compliant 10/100M MAC
- MII interface (for full-duplex/half-duplex)
- SMI interface for PHY device control

Note : The filtering function of layer $3 / 4$ (mount on hardware).
This feature determines whether to pass or discard packets when this layer 3 (network layer) IP addresses or layer 4 (transport layer) TCP/UDP port numbers match conditions.

- Outside interface with telecommunication facility (EXTERNAL INTERFACE)

MB91401 is equipped it with the register for the communication and with mass sending and receiving FIFO that achieves a large amount of data sending and receiving. Host functions include processing of data stored in a 3 KByte receive buffer and a 1.5 KByte transmit buffer and stopping of data reception. when the buffers become full.
This enables communication control even during data transmission and reception, thereby improving communication efficiency while reducing the CPU load.

- 8/16 bit data port
- Equipped with sending and receiving data port control function
- Transfer rate : 133 Mbps (Max)

- General Purpose IO (GPIO)

The interruption can be generated in the I/O port in eight bits according to changing the input signal. Moreover, the I/O setting can be done in each bit.

- Memory Interface

It is possible to connect it with an external memory.

- USB Function Controller

It can not operate as host USB.

- For USB FUNCTION Rev2.0FS
- Double Buffer Specification

(Continued)

- CARD Interface (CompactFlash)

The CompactFlash interface is a memory and I/O mode correspondence. It corresponds to the I/O of data such as not only the memory card but also the communication cards.

- ${ }^{2}$ C Interface
- Master/slave sending and receiving
- For standard mode (100 Kbps Max)

PIN ASSIGNMENT

- PIN NUMBER TABLE

Pin Number	Pin name						
1	VSS	61	UDP	121	EXD11	181	SDA
2	CFD15	62	CFWEX	122	EXD14	182	USBINS
3	ICLK	63	CFCE1X	123	CFCD2X	183	UDM
4	ICSO	64	CFIORDX	124	UCLKSEL	184	CFRESET
5	TDI	65	CFA1	125	CFWAITX	185	CFREGX
6	UCLK48	66	CFA5	126	N.C.	186	CFAO
7	TMS	67	CFA8	127	CFOEX	187	CFA3
8	XINI	68	CFDO	128	CFCE2X	188	CFA7
9	PLLBYPAS	69	CFD3	129	CFIOWRX	189	CFA10
10	OSCEB	70	CFD7	130	CFA2	190	CFD2
11	TESTO	71	CFD10	131	CFA6	191	CFD5
12	OSCEA	72	CFD13	132	CFA9	192	CFD9
13	TEST2	73	CFD14	133	CFD1	193	VSS
14	SCK0	74	ICS2	134	CFD4	194	ICD2
15	SIN0	75	ICS1	135	CFD8	195	VDDI
16	INT5	76	BREAKI	136	CFD11	196	VDDE
17	A3	77	CLKSEL	137	CFD12	197	PLLVSS
18	A2	78	TRST	138	ICD0	198	VSS
19	VSS	79	MDIO	139	ICD1	199	PLLVDD
20	A4	80	MDI2	140	ICD3	200	VDDI
21	A7	81	PLLSET0	141	TDO	201	VSS
22	A10	82	TEST1	142	MDI1	202	VDDE
23	A13	83	VDDE	143	VPD	203	VDDI
24	A16	84	TEST3	144	PLLSET1	204	INITXI
25	MCLKO	85	SIN1	145	OSCC	205	VSS
26	A21	86	SOUT0	146	TCK	206	NMIX
27	RDX	87	INT6	147	PLLS	207	VDDI
28	WRX2	88	A6	148	SCK1	208	VDDE
29	CSXO	89	A5	149	SOUT1	209	VSS
30	N.C.	90	A8	150	INT7	210	A0
31	D0	91	A11	151	A9	211	VDDI
32	D2	92	A14	152	A12	212	A1
33	D5	93	A17	153	A15	213	VSS
34	D9	94	A19	154	A18	214	VDDE
35	D12	95	A22	155	A20	215	VDDI
36	D15	96	WRX3	156	A23	216	D8
37	VSS	97	WRX1	157	RDY	217	VSS
38	D17	98	CSX1	158	WRX0	218	D26
39	D18	99	N.C.	159	CSX6	219	VDDI
40	D20	100	D1	160	N.C.	220	VDDE
41	D23	101	D3	161	N.C.	221	VSS
42	D27	102	D6	162	D4	222	MDCLK
43	TXEN	103	D10	163	D7	223	VDDI
44	TXD0	104	D13	164	D11	224	MDIO
45	RXDO	105	D16	165	D14	225	VSS
46	TXCLK	106	D19	166	D22	226	VDDE
47	RXD2	107	D21	167	D25	227	VDDI
48	RXCLK	108	D24	168	D29	228	EXD3/GPIO3
49	EXIS16	109	D28	169	D31	229	VSS
50	EXCSX	110	D30	170	TXD2	230	CFVS1X
51	EXD0/GPIO0	111	TXD1	171	TXD3	231	VDDI
52	EXD4/GPIO4	112	RXD1	172	RXDV	232	VDDE
53	EXD7/GPIO7	113	RXER	173	COL	233	VSS
54	EXD10	114	RXD3	174	DREQRX	234	CFVCC3EX
55	VSS	115	RXCRS	175	DREQTX	235	VDDI
56	EXD12	116	EXA	176	EXWRX	236	CFA4
57	EXD13	117	EXRDX	177	EXD2/GPIO2	237	VSS
58	CFCD1X	118	EXD1/GPIO1	178	EXD6/GPIO6	238	VDDE
59	SCL	119	EXD5/GPIO5	179	EXD9	239	VDDI
60	CFRDY	120	EXD8	180	EXD15	240	CFD6

PIN DESCRIPTION

SYSTEM (9 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
XINI	8	-	IN	D	Clock input pin Input pin of clock generated in clock generator. 10 MHz to 50 MHz frequency can be input.
INITXI	204	Negative	IN	D	Reset input pin This pin inputs a signal to initialize the LSI. When turning on the power supply, apply " 0 " to the pin until the clock signal input to the CLKIN pin becomes stable. All built-in registers and external pins are initialized, and the built-in PLL is stopped when "0" is asserted to INITXI.
NMIX	206	Negative	IN	D	NMI input pin Non-Maskable Interrupt signal
$\begin{aligned} & \text { INT7 } \\ & \text { INT6 } \\ & \text { INT5 } \end{aligned}$	$\begin{gathered} 150 \\ 87 \\ 16 \end{gathered}$	-	IN	D	External interrupt input pins These pins input an external interrupt request signal. For external interrupt detection, set the ENIR, EIRR and ELVR registers of the FR core.
MDI2 MDI1 MDIO	$\begin{gathered} \hline 80 \\ 142 \\ 79 \end{gathered}$	-	IN	D	Mode pins These pins determine the operation mode of the LSI. Always set this bit to "001".

OSCILLATOR (3 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
OSCEA	12	-	IN	G	Crystal oscillation input pin Input pin of crystal oscillation cell.
OSCC	145	Nega- tive	IN	D	Crystal oscillation control input pin Oscillation control pin of crystal oscillation cell. """ Oscillation "1" : Oscillation stop
OSCEB	10	-	OUT	G	Crystal oscillation output pin Output pin of crystal oscillation cell.

PLL CONTROL (5 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
PLLS	147	-	IN	D	PLL/through mode (reset) switching input pin " 0 " : PLL through mode (oscillation stop) "1" : PLL oscillation mode
PLLSET1	144	-	IN	D	Input clock division ratio select input pin "0" : Input clock direct "1" : Input clock divided by 2
PLLSET0	81	-	IN	D	Division ratio select input to PLL FB pin " 0 " : Two dividing frequency is input to the terminal FB. "1" : Four dividing frequency is input to the terminal FB.
PLLBYPAS	9	-	IN	D	PLL bypass select input pin "0" : PLL used "1": PLL unused
CLKSEL	77	-	IN	D	Input clock switching input pin "0": XINI (External clock) "1" : Built-in OSC generating clock

ICE (9 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
BREAKI	76	-	IN	D	Emulator break request pin This pin inputs the emulator break request when an ICE is connected.
ICS2	74 ICS1 ICS0	45	-	OUT	F
ICLK	3	-	I/O	BEmulator chip status pins These pins output the emulator status when an ICE is connected.	
Emulator clock pin This pin serves as the emulator clock pin when an ICE is connected.					
ICD3	140				
ICD2		ICD1	139		
ICD0	-	I/O	BEmulator data pins These pins serve as the emulator data bus when an ICE is connected.		

JTAG (5 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
TCK	146	-	IN	E	JTAG test clock pin Note : Please input "1" when unused.
TRST	78	-	IN	E	JTAG test reset pin Note : Please input "0" when unused.
TMS	7	-	IN	E	TAP controller mode select pin Note : Please input "1" when unused.
TDI	5	-	IN	E	JTAG test data input pin JTAG test serial data input pin. Note : Please input "1" when unused.
TDO	141	-	OUT	F	JTAG test data output pin JTAG test serial data output pin

TEST (5 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
VPD	143	-	IN	-	Mode pin Input "0" to this pin.
TEST3	84				Test pin TEST2
TEST1	13	-	IN	D	Input "0000" to this pin.
TEST0	11				Note : Don't set other than above description.

UART (6 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
SIN1	85	-	IN	D	Serial data input pins Serial data input pin of UART built-in FR core.
SIN0	15	-	In		F
SOUT1	149	-	OUT	F	Serial data output pins Serial data output pin of UART built-in FR core.
SOUT0	86	-	$1 / O$	B	Serial clock I/O pins Serial clock input/output pin of UART built-in FR core.
SCK1	148	-	I/O		
SCK0	14				

MEMORY IF (66 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	
A23	156				
A22	95				
A21	26				
A20	155				
A19	94				
A18	154				
A17	93				
A16	24				
A15	153				
A14	92				
A13	23				
A12	152	-	OUT	B	Address output pins
A11	91				
A10	22				
A9 9	151				
A8 address signal pin.	90				
A7	21				
A6	88				
A5	89				
A4	20				
A3	17				
A2	18				
A1	212				
A0	210				

(Continued)
(Continued)

ETHERNET MAC CONTROLLER (17 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
RXCLK	48	-	IN	D	Clock input for reception pin MII sync signal during reception. The frequency is 2.5 MHz at 10 Mbps and 25 MHz at 100 Mbps .
RXER	113	Positive	IN	D	Receive error input pin It is recognized that there is an error in the reception packet when " 1 " is input from the PHY device at receiving.
RXDV	172	Positive	IN	D	Receive data valid input pin It is recognized that receive data is effective.
RXCRS	115	Positive	IN	D	Career sense input pin The state that the reception or the transmission is done is recognized.
$\begin{array}{\|l\|} \hline \text { RXD3 } \\ \text { RXD2 } \\ \text { RXD1 } \\ \text { RXD0 } \end{array}$	$\begin{gathered} \hline 114 \\ 47 \\ 112 \\ 45 \end{gathered}$	-	IN	D	Receive data input pins 4-bit data input from PHY device.
COL	173	Positive	IN	D	Collision detection input pin When TXEN signal is active and " 1 ", the collision is recognized. The collision is not recognized without these conditions.
TXCLK	46	-	IN	D	Clock input for transfer pin It becomes synchronous of MII when transmitting. The frequency is 2.5 MHz at 10 Mbps and 25 MHz at 100 Mbps .
TXEN	43	Positive	OUT	F	Transfer enable output pin It is shown that effective data is on the TXD bus. It is output synchronizing with TXCLK.
TXD3 TXD2 TXD1 TXD0	$\begin{gathered} 171 \\ 170 \\ 111 \\ 44 \end{gathered}$	-	OUT	F	Transfer data output pins 4-bit data bus sent to the PHY device. It is output synchronizing with TXCLK.
MDCLK	222	-	OUT	F	SMI clock output pin SMI IF clock pin Connect to SMI clock input pin of PHY device.
MDIO	224	-	I/O	B	SMI data input/output pin Connect to SMI data of PHY device.

EXTERNAL IF (23 pin)

Pin name	Pin no.	Polarity	1/0	Circuit	Function/application
EXCSX	50	Negative	IN	D	External chip select input pin Chip select input pin from external host.
EXA	116	-	IN	D	External address input pin Address input pin from external host. " 0 ": Register select "1": FIFO data select
$\begin{aligned} & \hline \text { EXD15 } \\ & \text { EXD14 } \\ & \text { EXD13 } \\ & \text { EXD12 } \\ & \text { EXD11 } \\ & \text { EXD10 } \\ & \text { EXD9 } \\ & \text { EXD8 } \end{aligned}$	$\begin{gathered} \hline 180 \\ 122 \\ 57 \\ 56 \\ 121 \\ 54 \\ 179 \\ 120 \end{gathered}$	-	I/O	B	External data input/output pins The I/O terminal of data bus bit of bit15 to bit8 with an external host.
EXD7/GPIO7 EXD6/GPIO6 EXD5/GPIO5 EXD4/GPIO4 EXD3/GPIO3 EXD2/GPIO2 EXD1/GPIO1 EXD0/GPIOO	$\begin{gathered} \hline 53 \\ 178 \\ 119 \\ 52 \\ 228 \\ 177 \\ 118 \\ 51 \end{gathered}$	-	I/O	B	External data/GPIO input/output pins The I/O terminal of data bus bit of bit7 to bit0 with an external host. Note : When EXIS16 "0" input, it becomes the I/O terminal of GPIO7 to GPIO0.
EXRDX	117	Negative	IN	D	External read strobing input pin Read strove input pin from external host
EXWRX	176	Negative	IN	D	External write strobing input pin Write strove input pin from external host
EXIS16	49	-	IN	D	External data bus width select input pin Bit width select pin of EXD $\text { "0" : } 8 \text { bit }$ (Note : EXD15 to EXD8 are enabled.) $\text { \|"1" : } 16 \text { bit }$
DREQRX	174	Negative	OUT	F	External reception data request output pin Recordable data to reception FIFO is shown.
DREQTX	175	Negative	OUT	F	External transfer data request output pin It is shown that there are data in transmission register and transmission FIFO.

USB IF (5 pin)

Pin name	Pin no.	Polarity	1/0	Circuit	Function/application
UDP	61	-	I/O	C	USB data D + (differential) pin I/O signal pin on the plus side of the USB data. Use the LSI with 25Ω to 30Ω (27Ω recommended) external series load resistors, $1.5 \mathrm{k} \Omega$ pull-up resistors and about $100 \mathrm{k} \Omega$ resistors. Input " 0 " when the USB macro is unused.
UDM	183	-	I/O	C	USB data D - (differential) pin I/O signal pin on the minus side of the USB data. Use the LSI with 25Ω to 30Ω (27Ω recommended) external series load resistors, $1.5 \mathrm{k} \Omega$ pull-up resistors and about $100 \mathrm{k} \Omega$ resistors. Input " 0 " when the USB macro is unused.
USBINS	182	-	IN	D	USB insert input pin USB socket input detection pin. Be sure to input " 0 " when not using USB macro.
UCLK48	6	-	IN	D	48 MHz input (external clock input) pin This pin inputs an external $48-\mathrm{MHz}$ clock signal. The USB macro operates based on this clock. Input the clock with high accuracy (as not only LSI but also a device) more than 2500 ppm . Input " 0 " when the USB macro is unused.
UCLKSEL	124	-	IN	D	USB clock select pin Clock select pin using for USB macro "0" : Using internal clock "1" : Using UCLK48

CARD IF (41 pin)

Pin name	Pin no.	Polarity	1/0	Circuit	Function/application
CFD15	2				
CFD14	73				
CFD13	72				
CFD12	137				
CFD11	136				
CFD10	71				
CFD9	192				
CFD8	135	-	I/O	B	I/O data/status/command signal pin to CompactFlash card
CFD7	70	-	1/0	B	I/O data/status/command signal pin to CompactFlash card side
CFD6 CFD5	$\begin{aligned} & 240 \\ & 191 \end{aligned}$				
CFD4	134				
CFD3	69				
CFD2	190				
CFDO	133				
CFD0	68				
CFA10	189				
CFA9	132				
CFA8	67				
CFA7	188				
CFA6	131				CF address 10 to 0 output pins
CFA5	66	-	OUT	B	Address output CFA10 to CFA0 pins to CompactFlash card
CFA4	236				
CFA3	187				
CFA2	130				
CFA1	65				
CFAO	186				
CFCE2X	128	Negative	OUT	B	CF card enable output pin Byte access output pin to CompactFlash card side Note : Supported for access to CFD7 to CFD0. When "L" level is output, odd number byte access of the word is shown.
CFCE1X	63	Negative	OUT	B	CF card enable output pin Byte access output pin to CompactFlash card side Note : Supported for access to CFD7 to CFD0. When "L" level is output at word access, even number byte access of the word is shown. When the byte is accessed, the even number byte and odd number byte access become possible because CFA0 and CFCE2X are combined and used by it.
CFREGX	185	Negative	OUT	B	CF Attribute/Common switching output pin Attribute/Common switching output pin to CompactFlash card side " H ": Common Memory select "L" : Attribute Memory select
CFCD2X	123	Negative	IN	E	Card connection detect input pin : CFCD2X Checking connection pin of the socket and CompactFlash card. It is shown that the CompactFlash card was connected when this signal and CFCD1X are both input by " 0 ".

(Continued)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application			
CFCD1X	58	Nega- tive	IN	E	Card connection detect input pin : CFCD1X Checking connection pin of the socket and CompactFlash card. It is shown that the CompactFlash card was connected when this signal and CFCD2X are both input by "0".			
CFVS1X	230	Nega- tive	IN	E	CF side GND input pin GND level detection pin from CompactFlash side. The "0" input to the pin assumes that the CompactFlash card can operate at 3.3 V, setting the CFVCC3EX pin to the "L" level.			
CFRDY (CFIREQ)	60	Posi- tive (Nega- tive)	IN	E	CF ready input pin : memory card Ready input pin from CompactFlash memory card side "1": Ready "0" : Busy (CF interrupt : I/O card)			
Interrupt request pin of CompactFlash I/O card. It is shown								
the interrupt request was done from the I/O card when input								
to this signal by "0".						$	$	CFWAITX
:---								
125								
CFVCC3EX								

${ }^{2} \mathrm{C}$ IF (2 pin)

Pin name	Pin no.	Polarity	I/O	Circuit	Function/application
SDA	181	-	I/O	B	Serial data line input/output pin I'C bus data I/O pin
SCL	59	-	I/O	B	Serial clock line input/output pin R $^{2} \mathrm{C}$ bus clock I/O pin

Power Supply/GND (39 pin)

Pin name	Pin no.	Polarity	1/0	Circuit	Function/application
PLLVDD	199	-	Power supply	V-E	APLL dedicated power supply pin This pin is for 1.8 V power supply pin.
PLLVSS	197	-	GND	V-S	APLL dedicated GND Pin
VDDE	$\begin{aligned} & \hline 83 \\ & 196 \\ & 202 \\ & 208 \\ & 214 \\ & 220 \\ & 226 \\ & 232 \\ & 238 \end{aligned}$	-	Power supply	V-E	3.3 V power supply pin
VDDI	195 200 203 207 211 215 219 223 227 231 235 239	-	Power supply	V-E	1.8 V power supply pin
VSS	$\begin{gathered} \hline 1 \\ 19 \\ 37 \\ 55 \\ 193 \\ 198 \\ 201 \\ 205 \\ 209 \\ 213 \\ 217 \\ 221 \\ 225 \\ 229 \\ 233 \\ 237 \end{gathered}$	-	GND	V-S	GND Pin

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- With pull/down - CMOS level output - CMOS level input - Value of pull-down resistance $=$ approx. $33 \mathrm{k} \Omega$ (Typ)
B		- CMOS level output - CMOS level input
C		USB I/O

(Continued)
(Continued)

| Type | | Circuit | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| CMOS level input | | | |

- HANDLING DEVICES

Preventing Latch-up

When a voltage that is higher than VDDE and a voltage that is lower than Vss are impressed to the input terminal and the output terminal in CMOS IC or the voltage that exceeds ratings between Vode to V_{ss} is impressed, the latch-up phenomenon might be caused. If latch-up occurs, the supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating during device operation.

Separation of power supply pattern

Analog PLL (APLL at the following) is installed in this LSI. The power supply for VCO and for digital is separated in LSI so that the oscillation characteristic of APLL may receive the influence of power supply variation.

Therefore, the power supply is recommended to be separated also on the mounting base.

- Separation of power supply pattern (recommended)

Take measures to reduce impedance, for example, by using as wide a power pattern as possible.
The recommendation example is shown as follows.

- For two power supplies (for digital and for VCO)

It is advisable to provide a digital power-supply (a) and VCO power-supply (b) and connect them to the LSI's equivalents, respectively.

Figure For 2-power supply (for digital and for VCO)

- For the common power supply

To share a single power-supply for digital and VCO uses, it is advisable to separate the output into the digital and VCO wiring patternsand connect them to the LSI.

Figure When you share the power supply for digital and for VCO

Treatment of the unused pins

Leaving unused input pins open results in a malfunction, so process the pull-up or pull-down.

Treatment of OPEN pins

Be sure to use open pins in open state.

Treatment of output pins

A large current may flow to an output pin left connected to the power-supply, another output pin, or to a high capacitance load. Leaving the output pin that way for an extended period of time degrades the device. Use meticulous care in using the device not to exceed the absolute maximum rating.

About Mode (MDI2 to MDIO, VPD) pin and Test (TEST3 to TESTO) pin

Connect these pins directly to VDDE or VSS. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between individual mode pins and VDDE or VSS on the PC board as possible and connect them with as low an impedance as possible.

About power supply pins

In products with multiple VDDE, VDDI or VSS pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level to prevent abnormal operation strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

The power pins should be connected to VDDE, VDDI and VSS of this device at the lowest possible impedance from the current supply source.

It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between VDDE and VSS, and between VDDI and VSS near this device.

Crystal Oscillator Circuit

Noise near the OSCEA terminal may cause the MB91401 to malfunction.
Design the circuit board so that OSCEA terminal, OSCEB terminal and the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended to design the PC board artwork with the OSCEA terminal and OSCEB terminal surrounded by ground plane because stable operation can be expected with such a layout.

■ CONNECTED SPECIFICATION OF MB91401 AND ICE

Recommended type and circuit configuration of the emulator interface connector mounting on the user system, attention when designing and wiring regulation are shown.
When the flat cable is used, the combination of the connectors with housing should be selected.
Recommended connector type

Attached cable	Part number	Remarks
FPC cable	FH10A-30S-1SH (Maker : Hirose Electric Co., Ltd.)	With latch

- Circuit composition

Please put the dumping resistance 15Ω in the series in the ICLK terminal signal because of the stability of operation when connecting it with ICE. Resistance must be mounted near the terminal ICLK of this LSI when you design the printed wiring board.

*1 : Use the line (inter connect) to flow the rating current or more.
*2 : The change circuit might become necessary, and refer to "Precaution when designing".
*3 : Mount resistance near the terminal ICLK of MB91401.

- Precaution when designing

When evaluation MCU on the user system is operated in the state that the emulator is not connected, should be treated as follow each input terminal of evaluation MCU connected with the emulator interface on the user system.
Therefore, note that the switch circuit etc, might become necessary in the user system when you design.
The terminal processing in each emulator interface is shown as follows.

Pin treatment of emulator interface (DSU-3)

Evaluation MCU terminal name	Pin treatment
RST	To be connected the RST terminal with the reset output circuit in the user system.
Others	To open.

Emulator interface wiring regulations

Signal line name	Wiring regulations
ICLK	- The total wiring length of each signal (From evaluation MCU pin to the
ICS2 to ICSO	
ICD3 to ICDO	emulator interface connector pin) is made within 50 mm.
BREAKI	The difference of the total wiring length of each signal makes within 2 cm and the total wiring length of ICLK is the shortest.
- Wire the pattern with capacity more than the ratings current.	
UV	- Each power supply and GND may cause a short-circuit or reverse connec- tion in between by a wrong connection of a probe. Insert a protection circuit such as a fuse into each power supply pattern to safeguard it.
GND	- Connect directly with a power supply system pattern such as grandopran.

- Reference document

Please match and refer to the following manual for the connection with ICE.

- DSU-FR Emulator MB2198-01 Hardware Manual
- FR20/30 series MB2197-01 Hardware Manual

JTAG

The JTAG function is installed in this LSI.
Note that the terminal INITXI should be input in "L" when using JTAG.

Notes when quartz vibrator is mounted

The crystal oscillation circuit built into this LSI operates by the following compositions.

- Pin description

Pin name	Function
OSCC	Oscillation control terminal of crystal oscillation cell (OSC)
OSCEA	Input terminal of crystal oscillation cell (OSC)
OSCEB	Output terminal of crystal oscillation cell (OSC)

When OSCCL is input, the OSCEA and OSCEB oscillate at the natural frequency of the crystal oscillator and propagated into the LSI.

- Circuit constant on external substrate

Circuit constants	Description
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$	External load capacity
L	Inductance
Rr	Dumping resistance (addition if necessary)

- Reference Value

Oscillation frequency	C1, C2	C3	L	Rr
to 30 MHz	5 pF to 33 pF	None	None	None
20 MHz to 50 MHz	5 pF to 15 pF	10 nF approx.	$1 \mu \mathrm{H}$ approx.	None

It is necessary to add $\mathrm{C} 3 / \mathrm{L}$ depending on a basic wave and the over tone characteristic of the oscillator of the 20 MHz to 30 MHz belt.
Note : These reference values are standards. The constant changes according to the characteristic of the quartz vibrator used. Therefore, we will recommend the initial evaluation that uses the evaluation sample to the decision of the circuit constant. Please contact FUJITSU representatives about the evaluation sample.

- Notes when encryption/authentication accelarator is used

When using the encryption/authentication installed in this LSI, it is necessary to the following notes.

32-bit data bus

The encryption/authentication accelerator fetches data from the area storing data to be subject to encryption/ authentication and encrypts or authenticates the data without CPU intervention. In the encryption processing, write is done in the area where it wants to store the data after the encryption is processed.

Holding request withdrawal demand function OFF

When accessing to the storage destination of encryption/authentication processing data, the encryption/authentication accelerator should hold an internal bus of this LSI.

Therefore, when the encryption/authentication accelerator are used, it should be set that the holding request withdrawal doesn't demand.
Please set the HRCL register that sets the interrupt level that becomes the standard of the holding request withdrawal demand generation to "10000" in the FR core.
For NMIs, the hold request cancel request occurs regardless of the HRCL register setting. When the encryption/ authentication accelerator is used, therefore, NMI input may cause encryption/authentication to fail to result correctly. In that case, the correspondence said that it will execute the encryption/authentication processing under execution again is necessary.

- Notes as device

Treatment of Unused Input Pins

It causes the malfunction that the unused input terminal is made open, and do the processing such as 1 stack or 0 stacks.

About Mode pins (MDI2 to MDIO)

Connect these pins with the input buffer by 1 to 1 to prevent the malfunction by the noise, and connect directly to VDD or VSS outside of ASIC.

Operation at start-up

Specify set initialization reset (INIT) with the terminal INITXI when you turn on the power supply.
Moreover, connect "L" level input to the terminal INITXI until the input clock is steady.

About watch dog timer

The watchdog timer function of this macro monitors a program to check whether it delays a reset within a certain period of time. If the program runs out of control and fails to delay the reset, the watchdog timer function resets the CPU.

Therefore, it keeps operating until reset is specified when the watchdog timer function is made effective once.
Exceptionally, the reset postponement is automatically done under the condition that the program execution of CPU stops. Refer to the paragraph of the function explanation of the watchdog timer for the condition of applying to this exception.
There is a possibility that watchdog reset is not generated when entering the above-mentioned state by the reckless driving of the system. In that case, please specify reset (INIT) from external INITX terminal.

Restrictions

- Clock control block
- Secure the clock stability waiting time at "L" input to INITXI.
- When entering the standby mode, use the following sequences after using the synchronous standby mode (TBCR:set at the bit8 SYNCS bit of timebase counter control register).
(LDI \#value_of_standby, RO) ; Value_of standby is write data to STCR.
(LDI \#_STCR, R12) ; STCR is address (481 H) of STCR.
STB R0, @R12 ; Write to standby control register (STCR).
LDUB @R12, R0 ; STCR read for synchronous standby
LDUB @R12, R0 ; Dummy re-read of STCR
NOP
NOP
NOP
NOP
NOP
In addition, set the I-flag and the ILM and ICR registers to branch to an interrupt handler when the interrupt handler triggers the microcontroller to return from the standby mode.
- Please do not do the following when the monitor debugger is used.
- Please do not set the break point to the above-mentioned instruction row.

CPU

- The instruction fetch is not done from D-bus, and does not set the code area on D-bus RAM.
- Set neither stack area nor the vector table on the instruction RAM.
- The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS instruction is (a) halted by a user interrupt or NMI, (b) single-stepped, or (c) breaks in response to a data event or emulator menu:
(1) The D0 and D1 flags are updated in advance.
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
(3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (1).
- The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed.
(1) The PS register is updated in advance.
(2) Executing of EIT processing routine (user interrupt \bullet NMI)
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).
- Since some instructions manipulate the PS register earlier, the following exceptions may cause the interrupt handler to break or the PS flag to update its display setting when the debugger is being used. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event in either case, it performs operations before and after the EIT as specified.

1. When (a) user interrupt and NMI are accepted or (b) step is executed or (c) break is done by the data event or the menu of the emulator in the instruction immediately before the instruction of DIVOU/DIVOS, the following operation might be done.
(1) The D0 and D1 flags are updated in advance.
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
(1) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (3).
2. When ORCCR, STILM, MOV Ri, and PS each instruction is executed to permit interrupt with the user interrupt and the NMI factor generated, the following operation is done.
(1) The PS register is updated in advance.
(2) The EIT processing routine (user interrupt, NMI or emulator) is executed.
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

- Do not access the data to the cache memory at the control register of the instruction cash and RAM mode immediately before the instruction of RETI.
- If one of the instructions listed below is executed, the SSP or USP* value is not used as the R15 value and, as a result, an incorrect value is written to memory.
- Only ten following kinds of instructions that specify R15 as Ri correspond.

AND	$R 15, @ R j$	ANDH	$R 15, @ R j$	ANDB	$R 15, @ R j$
OR	$R 15, @ R j$	ORH	$R 15, @ R j$	ORB	$R 15, @ R j$
EOR	$R 15, @ R j$	EORH	$R 15, @ R j$	EORB	$R 15, @ R j$
XCHB	$@ R j, R 15$				

* : As for R15, there are no realities. When R15 is accessed from the program, SSP or USP is accessed by the state of "S" flag of the PS register. Please specify general registers other than R15 when ten above-mentioned instructions are described by the assembler.
- External bus interface
- When the bus width of the area set up as little endian is 32 -bit, confine to word (32-bit) access when accessing the relevant area.
- When enabling prefetch to the area set to the Little endian, give the access to the corresponding area as word (32 bits) access limitation. In the byte and the half word access, it is not possible to access it correctly.
- DMA
- Do not transfer DMA to instruction RAM.
- Bit Search Module
- BSD0, BSD1, and the BDSC register are only the word accesses.

NOTES OF DEBUG

Step execution of RETI instruction

In an environment where interrupts frequently occur during single-step execution, only the relevant interrupt processing routines are executed repeatedly during single-step execution of the RETI instruction. This will prevent the main routine and low-interrupt-level programs from being executed.
Do not execute step of RETI instruction for escape.
When the relevant interrupt routine no longer requires being debugged, disable the relevant interrupt and perform debugging.

Operand break

Do not set the access which is used for area, including the address of system stack pointer, to the target of data event break.

Interrupt handler to NMI request (tool)

To prevent the malfunction because of the noise problem of DSU pin when ICE is unconnected, the following programs are added to the interrupt handler by the cause flag, which is only set by the break request from ICE. ICE can be used even if this program is added.

Location to added

The following interrupt handler
Interrupt resource : NMI request (tool)
Interrupt number : 13 (decimal), OD (hexadecimal)
Offset : ЗС8н
TBR is default address. : 000FFFC8 ${ }_{\mathrm{H}}$

Additional program

STM (R0, R1)
LDI \#B00н, RO ; BOOH is address of the break resource register.
LDI \#0, R1
STB R1, @R0 ; Clear the break resource register.
LDM (R0, R1)
RETI

Trace mode

If the trace mode is set to "Full trace mode" during debug (in full trace mode, built-in FIFO is used as output buffer, the trace memory of the main body of ICE is used, and the trace data lost is not occurred), the electric current is increased and D-busDMA access may be lost.
Also, the trace data lost may be occurred.
To take the measures, do not set full trace mode.

Simultaneous generation of a software break and a user interrupt/NMI

When a software break and a user interrupt/NMI occur simultaneously, the emulator debugger may react as follows.

- The debugger stops pointing to a location other than the programmed breakpoints.
- The halted program is not re-executed correctly.

When these problems are occurred, not only the software break, the hardware break should also be used. Do not set the break to the corresponding location when using monitor debugger.

BLOCK DIAGRAM

FR core : CPU, U-Timer, UART, Timer, Interrupt controller, DMAC, Bit search, External interrupt, Memory_IF, Data-RAM, Cache, Bus controller
Peripheral resources : LAN, External_IF, GPIO, Card, Encryption/Authentication, ${ }^{I}$ C ${ }^{2}$, USB (Peripheral resource is connected to bus of bus controller.)

MEMORY SPACE

- Memory space

The FR family has 4 GByte of logical addresses (2^{32} address) which can be linearly accessed by the CPU.

Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.
The direct addressing area varies as shown below depending on the size of access data:
\rightarrow byte data access $\quad: 0-0 \mathrm{FF}$ H
\rightarrow half word data access $: 0-1 \mathrm{FF}$ н
\rightarrow word data access $: 0-3 \mathrm{FF}_{\mathrm{H}}$

- Memory Map

The memory space of the macro consists of the following areas.

Direct Addressing Areas Refer to I/O Map	1/O	0000 0000н
	I/O	0000 0400H
	I-bus RAM 4 KB (and its mirror)	0001 0000H
	Access disallowed area	0002 0000H
	D-bus RAM 8 KByte	$0003 \mathrm{F800H}$
		0004 0000H
	External area	

GENERAL PURPOSE REGISTERS

\square

Registers R0 to R15 are general-purpose registers. The registers are used as the accumulator and memory access pointers for CPU operations.

Of these 16 registers, the registers listed below are intended for special applications, for which some instructions are enhanced.

R13: Virtual accumulator
R14: frame pointer
R15:Stack pointer

The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000 H (SSP value).

MODE SETTINGS

The FR family uses the mode pins (MDI2 to MDIO) and the mode register (MODR) to set the operation mode.

- Mode Pins

Three mode pins MDI[2], MDI[1], and MDI[0] are used to specify a mode vector fetch or test mode.

Mode pins	Mode name	Reset vector access area	Remarks
MDI2 to MDIO			
000	Reserved	-	
001	external ROM mode vector	External	Bus width is set by the mode data.
010	User circuit test	-	FR stops (with clock signal supplied).
011	Reserved	-	
100	Reserved	-	
101	Reserved	-	
110	Reserved	-	
111	Reserved	-	

Setting MDI2 to MDIO to "010", USRTEST is set to " 1 " and the device operates in the user circuit test mode. The FR71 core is suspended in the user circuit test mode while SYSCLK and MCLKO are operating. The reserved modes include the FR71 core test mode. In this case, the signal at the FRTEST pin becomes "1" and enters the FR71 core test mode. If the FRTEST pin = " 1 ", that circuit configuration is required which allows the separately defined pins of the FR71 core to be controlled and monitored from the outside of the chip.

- Mode Register (MODR)

The data written to the mode register (MODR) by hardware using a mode vector fetch is called mode data.
When this register is set by hardware, the CPU operates in the operation mode corresponding to the register setting.
The mode register is set only by an INIT-level reset cause. The user program cannot access this register.
However, as an exception, when the macro shifts to emulation mode by INTE instruction, or shifts to emulation mode by a break at a debug using ICE, this register is mapped at 0000_07FDн. Select this function when using ICE, perform the mode data setting before the program loading by writing a appropriate value to this register.
Note : No data is existed in the address (0000_07FFH) in the mode register of the FR family.

- Register

[bit7 to bit2] Reserved bit
Be sure to set this bit to " 000000 ". Setting them to any other value may result in an unpredictable operation.

[bit1, bit0] WTH1, WTH0 (Bus width setting bits)

These bits specify the bus width. The value of the bits is set in the DBW1 and DBW0 bits in ACR0 (CSO area). Set these bits to a value other than " 11 ".

WTH1	WTH0	Function	Remarks
0	0	8-bit bus width	External bus mode
0	1	16-bit bus width	External bus mode
1	0	32-bit bus width	External bus mode
1	1	Setting disabled	

- Operation mode

In the operation mode, there are a bus mode and an access mode.

Bus mode

In bus mode, the operations of internal ROM and the external access functions are controlled according to the mode setting pins (MD2 to MD0) and the values of mode data.
Although the FR71 architecture supports this bus mode, this macro cannot use the single-chip or internal ROM/ external bus mode but can use the external ROM/external bus mode only.

Access mode

Access mode indicates the mode that controls the external data bus width, and is specified by the WTH1/WTH0 bits, and the DBW1/DBW0 bits within ACR0 to ACR7 (Area Configuration Registers).

Bus mode

The FR family has three bus modes described below. Please refer to "■ MEMORY SPACE" for details.

I/O MAP

This shows the location of the various peripheral resource registers in the memory space.
[How to read the table]

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{array}{\|l\|} \hline 0000 _000 \text { H }_{\text {н }} \\ 0000 _003 \mathrm{CH}_{\mathrm{H}} \end{array}$	-				Reserved
$0000 _0040 \mathrm{H}$		ENIR [R/W] 00000000 ead/Write attrib tial value after gister name (address $4 \mathrm{n}+$ ft most registe lumn 1 is posi	000 nn reg (Wh the N	00 ss 4 it by ata.)	Ext Int column register register of

Note : Initial values of register bits are represented as follows :

"1"	: Initial Value
"0"	Initial Value
"X"	Initial

"-" : Access prohibited in reserved area.

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{aligned} & 0000 _0000_{\mathrm{H}} \\ & \text { to } \\ & 0000 _003 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
0000_0040	$\begin{aligned} & \text { EIRR [R/W] } \\ & 00000000 \end{aligned}$	ENIR [R/W] 00000000	$\begin{array}{r} \text { ELVR } \\ 00000000 \end{array}$	[R/W] 00000000	Ext Int
0000_0044	$\begin{gathered} \hline \text { DICR [------- } 0 \text {] } \end{gathered}$	$\begin{gathered} \hline \text { HRCL [R/W] } \\ 0-11111 \end{gathered}$	-		DLYI/I-unit
0000_0048	TMRLR0 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMR0 } \\ \text { [R] } \\ X X X X X X X ~ \\ X X X X X X X \end{gathered}$		Reload Timer 0
0000_004CH			$\begin{array}{r} \text { TMCSR0 } \\ ---0000 \end{array}$	[R/W] 00000000	
0000_0050	$\begin{gathered} \text { TMRLR1 [W] } \\ \mathrm{XXXXXXX} \mathrm{XXXXXX} \end{gathered}$		$\begin{gathered} \text { TMR1 } \\ \text { [R] } \\ \mathrm{XXXXXXX} \\ \mathrm{XXXXXXX} \end{gathered}$		Reload Timer 1
0000_0054			$\begin{array}{r} \text { TMCSR1 } \\ ---0000 \end{array}$	[R/W] 00000000	
0000_0058	TMRLR XXXXXXX	W] $X X X X X X X X$	$\begin{array}{r} \text { TMR2 } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[R]} \\ & X X X X X X X X \end{aligned}$	Reload Timer 2
0000_005CH			$\begin{array}{r} \text { TMCSR2 } \\ ---0000 \end{array}$	[R/W] 00000000	

(Continued)

(Continued)

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{gathered} \hline 0000 _0308 \text { н } \\ \text { to } \\ 0000 _03 \text { ЕОн } \end{gathered}$	-				Reserved
0000_03E4H	-			ICHRC [R/W] 0-000000	Instruction Cache
$\begin{aligned} & \text { 0000_03E8н } \\ & \text { to } \\ & 0000 _03 \text { ECH } \end{aligned}$	-				Reserved
0000_03F0н	BSD0 $[W]$ XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit Search Module
0000_03F4H	BSD1 $[R / W]$ $X X X X X X X X X X X X X X X$ XXXXXXXX XXXXXXXX				
0000_03F8н					
0000_03FCH					
$\begin{gathered} \text { 0000_0400н } \\ \text { to } \\ 0000 _043 \text { C }_{\text {H }} \end{gathered}$	-				Reserved
0000_0440н	$\begin{gathered} \hline \text { ICR00[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03[R/W] } \\ ---11111 \end{gathered}$	Interrupt Control Unit
0000_0444H	$\begin{gathered} \hline \text { ICR04[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR05[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR07[R/W] } \\ ---11111 \end{gathered}$	
0000_0448н	$\begin{gathered} \hline \text { ICR08[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR11[R/W] } \\ ---11111 \end{gathered}$	
0000_044Сн	$\begin{gathered} \hline \text { ICR12[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR13[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR14[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR15[R/W] } \\ ---11111 \end{gathered}$	
0000_0450н	$\begin{gathered} \hline \text { ICR16[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR17[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR18[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR19[R/W] } \\ ---11111 \end{gathered}$	
0000_0454H	$\begin{gathered} \text { ICR20[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR21[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR22[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR23[R/W] } \\ ---11111 \end{gathered}$	
0000_0458н	$\begin{gathered} \hline \text { ICR24[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR25[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27[R/W] } \\ ---11111 \end{gathered}$	
0000_045CH	$\begin{gathered} \hline \text { ICR28[R/W] }---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR29[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31[R/W] }---11111 \end{gathered}$	
0000_0460н	$\begin{gathered} \text { ICR32[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR33[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR34[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR35[R/W] } \\ ---11111 \end{gathered}$	
0000_0464н	$\begin{gathered} \hline \text { ICR36[R/W] }---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39[R/W] } \\ ---11111 \end{gathered}$	
0000_0468н	$\begin{gathered} \hline \text { ICR40[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR41[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR42[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR43[R/W] } \\ ---11111 \end{gathered}$	

(Continued)
(Continued)

Address	Register				Block
	+ 0	+1	+2	+ 3	
0000_046Сн	$\begin{gathered} \text { ICR44[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR45[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47[R/W] } \\ ---11111 \end{gathered}$	Interrupt Control Unit
$\begin{aligned} & \hline 0000 \text { _0470н } \\ & \text { to } \\ & 0000 _047 \mathrm{CH}_{\mathrm{H}} \end{aligned}$	-	-	-	-	Reserved
0000_0480н	$\begin{aligned} & \text { RSRR [R/W] } \\ & 10000000^{* 2} \end{aligned}$	$\begin{aligned} & \hline \text { STCR [R/W] } \\ & 00110011^{* 2} \end{aligned}$	TBCR [R/W] 00XXXX00*1	CTBR [R/W] XXXXXXXX	Clock Control
0000_0484H	Access disallowed	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011* ${ }^{*}$	DIVR1 [R/W] 00000000	Unit
$\begin{gathered} \hline 0000 _0488 \text { н } \\ \text { to } \\ 0000 _063 \mathrm{~F}_{\mathrm{H}} \end{gathered}$					Reserved
0000_0640н	$\begin{array}{r} \text { ASRO } \\ 00000000 \end{array}$	[R/W] 00000000	$\begin{array}{r} \text { ACR } \\ 1111^{* *} 0 \end{array}$	[R/W] 00000000*3	Memory IF
0000_0644H	$\begin{array}{r} \text { ASR1 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXXX} \end{aligned}$	$\begin{array}{r} \mathrm{ACR} \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0648н	$\begin{array}{r} \text { ASR2 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} \text { ACR } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_064CH	$\begin{array}{r} \text { ASR3 } \\ \text { XXXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} A C R \\ X X X X X X X \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0650н	$\begin{array}{r} \text { ASR4 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXXX} \end{aligned}$	$\begin{array}{r} \text { ACR } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0654H	$\begin{array}{r} \text { ASR5 } \\ \text { XXXXXXX } \end{array}$	[R/W] XXXXXXXX	$\begin{array}{r} \mathrm{ACR} \\ \mathrm{XXXXXXX} \end{array}$	[R/W] XXXXXXXX	
0000_0658H	$\begin{array}{r} \text { ASR6 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} \text { ACR } \\ X X X X X X \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_065Сн	$\begin{array}{r} \text { ASR7 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} \text { ACR } \\ X X X X X X \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0660н	$\begin{array}{r} \text { AWRO } \\ 01111111 \end{array}$	[R/W] 11111111	$\begin{array}{r} \text { AWR } \\ \text { XXXXXX } \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0664H	AWR2 XXXXXXXX	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} \text { AWR } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0668н	$\begin{array}{r} \text { AWR4 } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & \text { [R/W] } \\ & X X X X X X X \end{aligned}$	$\begin{array}{r} \text { AWR } \\ \mathrm{XXXXXX} \end{array}$	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_066CH	AWR6 XXXXXXXX	$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXX} \end{aligned}$	$\begin{array}{r} \text { AWR } \\ \mathrm{XXXXXX} \end{array}$	$\begin{aligned} & \text { [R/W] } \\ & \mathrm{XXXXXXX} \end{aligned}$	
0000_0670н	$\begin{array}{r} \text { MCRA } \\ X X X X X X X \end{array}$	$\begin{aligned} & \text { MCRB } \\ & \text { XXXXXXX } \end{aligned}$			
0000_0674H	-				
0000_0678	$\begin{aligned} & \text { IOWRO [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	IOWR1 [R/W] XXXXXXXX	IOWR2 [R/W] XXXXXXXX	-	

(Continued)
(Continued)

Address	Register				Block
	+ 0	+1	+2	+3	
0000_067С	-				Memory IF
0000_0680н	$\begin{gathered} \hline \text { CSER [R/W] } \\ 00000001 \end{gathered}$	$\begin{aligned} & \text { CHER [R/W] } \\ & \text { XXXXXXX1 } \end{aligned}$	-	$\begin{aligned} & \hline \text { TCR [R/W] } \\ & 00000000^{* 1} \end{aligned}$	
0000_0684н	$00 X X X X X X$	RoxXXXXX	-		
$\begin{aligned} & \text { 0000_0688н } \\ & \text { to } \\ & 0000 _0 F F C H \end{aligned}$	-				Reserved

*1 : An initial value is a different register at the reset level. The display is the one at the INIT level.
*2 : An initial value is a different register at the reset level. The display is due to the INIT level by INITX.
*3 : An initial value is set by the WTH bit of the mode vector.

Address	Register			Block
	+ 0	+ 1	+2	
0000_1000н				DMAC
0000_1004	$\begin{array}{r} \text { DMADA0 } \\ \text { XXXXXXXX XXXXXXX } \end{array}$		$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \text { XXXXXXXX XXXXXXXX } \end{aligned}$	
0000_1008н	$\begin{array}{r} \text { DMASA1 } \\ X X X X X X X X X X X X X X X \end{array}$		[R/W] XXXXXXXX XXXXXXXX	
0000_100С	$\begin{array}{r} \text { DMADA1 } \\ X X X X X X X X X X X X X X X \end{array}$		[R/W] $X X X X X X X X X X X X X X X X$	
0000_1010н	$\begin{array}{r} \text { DMASA2 } \\ \mathrm{XXXXXXXX} \mathrm{XXXXXXX} \end{array}$		[R/W] XXXXXXXX XXXXXXXX	
0000_1014	$\begin{array}{r} \text { DMADA2 } \\ X X X X X X X X X X X X X X X \end{array}$		[R/W] XXXXXXXX XXXXXXXX	
0000_1018	$\begin{array}{r} \text { DMASA3 } \\ \text { XXXXXXXX XXXXXXXX } \end{array}$		[R/W] XXXXXXXX XXXXXXXX	
0000_101C	$\begin{array}{r} \text { DMADA3 } \\ \text { XXXXXXXX XXXXXXXX } \end{array}$		$\begin{aligned} & {[\mathrm{R} / \mathrm{W}]} \\ & \mathrm{XXXXXXXXXXXXXX} \end{aligned}$	
0000_1020н	$\begin{array}{r} \text { DMASA4 } \\ \text { XXXXXXXX XXXXXXXX } \end{array}$		$\begin{aligned} & \text { [R/W] } \\ & \text { XXXXXXXX XXXXXXXX } \end{aligned}$	
0000_1024	$\begin{array}{r} \text { DMADA4 } \\ \text { XXXXXXXX XXXXXXXX } \end{array}$		[R/W] XXXXXXXX XXXXXXXX	
$\begin{array}{\|c\|} \hline 0000 _1028 \text { но } \\ 0000 _ \text {FFFCH } \end{array}$				Reserved

Address	Register				Block
	+ 0	+1	+2	+3	
010F_0000н	$\begin{gathered} \hline \text { BSR[R] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { BCR[R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { CCR[R/W] } \\ & 10000000 \end{aligned}$	$\begin{gathered} \hline \text { ADR[R/W] } \\ 1 X X X X X X X \end{gathered}$	$1^{2} \mathrm{C}$
010F_0004н	$\begin{gathered} \hline \mathrm{DAR}[\mathrm{R} / \mathrm{W}] \\ \mathrm{XXXXXXX} \end{gathered}$	-	-	$\begin{aligned} & \hline \text { BC2R[R/W] } \\ & 00 \mathrm{XX} 0000 \end{aligned}$	
$\begin{gathered} \text { 010F_0008н } \\ \text { to } \\ \text { 010F_FFFFH } \end{gathered}$	(Reserved)				

(Continued)

Address	Register					Block
	+ 0	+1	+2		+3	
0110_0028н	SMI_CMD[R/W]$00000000-00000000$			-		SIM IF
0110_002Сн	$\begin{gathered} \hline \text { SMI_CMD_ST } \\ {[R / W]} \\ 00 X X X X X X \end{gathered}$	-		-		
0110_0030н	SMI_DATA [R/W] 00000000-00000000			-		
0110_0034н	SMI_POLLINTVL [R/W] 00000000-00000000					
0110_0038н	SMI_PHY_ADD $[R / W]$ $00000 X X X$	-		-		SIM IF
0110_003CH	```SMI_CONTROL [R/W] 111XXXXX```	-		-		
0110_0040н	SMI_STATUS[R] XXXXXXXX	-		-		
0110_0044H	```SMI_INTENABLE [R/W] 0XXXXXXX```	-		-		
0110_0048н	$\begin{gathered} \hline \text { SMI_MDCDIV } \\ {[R / W]} \\ 01011 \mathrm{XXX} \end{gathered}$	-		-		

*: The attribute is different according to the bit.

Address	Register			Block
	+ 0	+1	+2	
0114_0000н	EXIFRXDR [R]$00000000-00000000{ }_{00000000-00000000}$			External IF
0114_0004н	EXIFTXDR [W]$00000000-00000000$ 00000000-00000000			
0114_0008н	$\begin{gathered} \text { EXIFRXR[R] } \\ 00000000-00000000 \end{gathered}$			
0114_000CH	$\begin{gathered} \text { EXIFTXR[W] } \\ 00000000-00000000 \end{gathered}$			
0114_0010н	$\begin{gathered} \text { EXIFCR[W] } \\ 00000000-0 X X X X X X \end{gathered}$			
0114_0014н	EXIFSR[R] 00000000-00XXXXXX			
0114_0018H	EXIFRXSR [R]$00000000-00000000[00000000-00000000$			
0114_001CH	EXIFTXSR [R]$00000000-00000000{ }_{00000000-00000000}$			
0114_0020н	-		$\begin{gathered} \hline \text { PIOCR[R/W] } \\ 00000000 \end{gathered}$	GPIO
0114_0024н	-	-		

Address	Register				Block
	+ 0	+1	+2	+ 3	
0500_03E0н	$\begin{gathered} \hline \text { IR[R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DR[R/W] } \\ 10000011 \end{gathered}$	(Reserved) -	$\begin{gathered} \hline \text { RR[R/W] } \\ 0000000 \end{gathered}$	Compact FLASH IF
$\begin{aligned} & \text { 0501_0000н } \\ & \text { to } \\ & 0501 _07 F F_{H} \end{aligned}$	AMR (Attribute Memory Area : window 0)				
$\begin{aligned} & \text { 0501_1000н } \\ & \text { to } \\ & 0501 _17 \mathrm{FFF}_{\mathrm{H}} \end{aligned}$	CMR (Common Memory Area : window 1)				

Address	Register		Block
	+0 +1	+2 +3	
0540_0000н	FIFOOout[R] XXXXXXXX-XXXXXXXX	FIFOOin[W] XXXXXXXX-XXXXXXXX	USB
0540_0004H	FIFO1[R] XXXXXXXX-XXXXXXXX	$\begin{gathered} \text { FIFO2[W] } \\ X X X X X X X-X X X X X X X \end{gathered}$	
0540_0008н	FIFO3[W] XXXXXXXX-XXXXXXXX	—	
$\begin{aligned} & 0540 _000 \mathrm{CH}_{\mathrm{H}} \\ & \text { to } \\ & 0540 _001 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	(Reserved)		
0540_0020н	-	$\begin{gathered} \text { CONT1[R/W] } \\ \text { XXXXX0XX-XXX00000 } \end{gathered}$	
0540_0024	CONT2[R/W] XXXXXXXX_XXX00000	CONT3[R/W] XXXXXXXX_XXX00000	
0540_0028н	$\begin{gathered} \text { CONT4[R/W] } \\ \text { XXXXXXX_XXX00000 } \end{gathered}$	$\begin{gathered} \text { CONT5[R/W] } \\ \text { XXXXXXXX_XXXX00XX } \end{gathered}$	
0540_002Сн	CONT6[R/W] XXXXXXXX_XXXX00XX	$\begin{gathered} \text { CONT7[R/W] } \\ \text { XXXXXXXX_XXX00000 } \end{gathered}$	
0540_0030н	CONT8[R/W] XXXXXXXX_XXX00000	CONT9[R/W] XXXXXXXX_0XXX0000	
0540_0034H	CONT10[R/W] XXXX0000_X000000X	$\begin{gathered} \text { TTSIZE[R/W] } \\ 00010001-00010001 \end{gathered}$	
0540_0038н	$\begin{gathered} \text { TRSIZE[R/W] } \\ 00010001-00010001 \end{gathered}$	-	
$\begin{array}{\|c} \hline 0540 _003 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 0540 _003 \mathrm{~F}_{\mathrm{H}} \end{array}$	(Reserved)		
0540_0040н	$\begin{gathered} \text { RSIZEO[R] } \\ \text { XXXXXXXX-XXXX0000 } \end{gathered}$	-	
0540_0044н	$\begin{gathered} \text { RSIZE1[R] } \\ \text { XXXXXXXX-X0000000 } \end{gathered}$	-	
$\begin{gathered} \text { 0540_0048 } \\ \text { to } \\ 0540 _005 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	(Reserved)		USB
0540_0060н	-	$\begin{gathered} \text { ST1[R/W] } \\ \text { XXXXXX00-00000000 } \end{gathered}$	
0540_0064	-	-	

(Continued)
(Continued)

Address	Register				Block
	+ 0	+1	+2	+3	
0540_0068н	$\begin{gathered} \text { ST2[R] } \\ \text { XXXXXXXX-X0000000 } \end{gathered}$		$\begin{gathered} \text { ST3[R/W] } \\ \text { XXXXXXXX-XXX00000 } \end{gathered}$		USB
0540_006C ${ }_{\text {¢ }}$					
$\begin{array}{\|c} \hline 0540 _0070 \text { н } \\ \text { to } \\ 0540 _007 \text { вн } \end{array}$	(Reserved)				
0540_007C			XXX		
$\begin{array}{\|c} \hline 0540 _0080 \text { н } \\ \text { to } \\ 0540 _ \text {FFFF } \end{array}$	(Reserved)				

Address	Register				Block
	+ 0	+1	+2	+ 3	
0580_0000н	MACRORR[W/R] 00000000-00000001		CARDSR[R/W] 00000000-00000000		Chip Register
0580_0004н	CARDIMR[R/W] 00000000-00000000		$\begin{gathered} \text { CARDISR[R] } \\ 00000000-00000000 \end{gathered}$		
0580_0008н	USBPLLRP[R/W] 00000000-00000000		—		

■ INTERRUPT VECTOR

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	Decimal	Hexadecimal				
Reset	0	00	-	3 FCH	000FFFFCC	-
Mode vector	1	01	-	3F8H	000FFFF8\%	-
System reserved	2	02	-	3F4 ${ }_{\text {H }}$	000FFFF4н	-
System reserved	3	03	-	3FOH	000FFFFF0н	-
System reserved	4	04	-	3ECH	000FFFECH	-
System reserved	5	05	-	3E8H	000FFFE8н	-
System reserved	6	06	-	3E4н	000FFFE4 ${ }_{\text {н }}$	-
Coprocessor absent trap	7	07	-	3E0H	000FFFEOH	-
Coprocessor error trap	8	08	-	3DCH	000FFFFDC	-
INTE instruction	9	09	-	3D8н	000FFFD8н	-
Instruction break exception	10	0A	-	3D4н	000FFFD4н	-
Operand break trap	11	0B	-	3D0н	000FFFDOH	-
Step trace trap	12	OC	-	3 CCH	000FFFCCH	-
NMI request (tool)	13	OD	-	3C8H	000FFFC8H	-
Undefined instruction exception	14	0E	-	3C4н	000FFFC4	-
NMI request	15	0F	Fh fixed	3 COH	000FFFCOH	-
Ethernet MAC IF	16	10	ICR00	ЗВСн	$000 \mathrm{FFFBC}{ }_{\text {H }}$	4
Authentication macro	17	11	ICR01	3В8н	000FFFB8	5
IPSec Accelerator/Code macro	18	12	ICR02	3В4н	000FFFB4 ${ }_{\text {н }}$	8
EX IF/GPIO	19	13	ICR03	3В0н	000FFFB0н	9
USB/I²C/CARD IF	20	14	ICR04	3АС ${ }_{\text {H }}$	000FFFACH	-
External interrupt 5	21	15	ICR05	3А8 ${ }^{\text {H }}$	000FFFA8н	-
External interrupt 6	22	16	ICR06	3А4 ${ }_{\text {н }}$	000FFFA4 ${ }_{\text {н }}$	-
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н	-
Reload timer 0	24	18	ICR08	39Сн	000FFF9CH	6
Reload timer 1	25	19	ICR09	398н	000FFF98н	7
Reload timer 2	26	1A	ICR10	394 ${ }_{\text {н }}$	000FFF94 ${ }_{\text {н }}$	-
UART0 (Reception completed)	27	1B	ICR11	390H	000FFF90н	0
UART1 (Reception completed)	28	1C	ICR12	38 CH	000FFF8C ${ }_{\text {H }}$	1
UART0 (RX completed)	29	1D	ICR13	388н	000FFF88н	2
UART1 (RX completed)	30	1E	ICR14	384н	000FFF84 ${ }_{\text {н }}$	3
DMAC0 (end error) Ethernet MAC IF	31	1F	ICR15	380н	000FFF80н	-
DMAC1 (end error) External IF	32	20	ICR16	37 CH	000FFF7CH	-
DMAC2 (end error) USB	33	21	ICR17	378H	000FFF78н	-

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	Decimal	Hexadecimal				
DMAC3 (end, error)	34	22	ICR18	374	000FFF74	-
DMAC4 (end, error)	35	23	ICR19	370 н	000FFF70н	-
System reserved	36	24	ICR20	36 CH	000FFF6Cн	-
System reserved	37	25	ICR21	368н	000FFF68H	-
System reserved	38	26	ICR22	364	000FFF64	-
System reserved	39	27	ICR23	360н	000FFF60н	-
System reserved	40	28	ICR24	35 CH	$000 \mathrm{FFF} 5 \mathrm{CH}_{\text {}}$	-
System reserved	41	29	ICR25	358 ${ }^{\text {+ }}$	000FFF58\%	-
System reserved	42	2A	ICR26	354	000FFF54	-
System reserved	43	2B	ICR27	350	000FFF50н	-
System reserved	44	2C	ICR28	34 CH	000FFF4CH	-
U-TIMER0	45	2D	ICR29	348н	000FFF48н	-
U-TIMER1	46	2E	ICR30	344	000FFF44н	-
Timebase timer overflow	47	2 F	ICR31	340н	000FFF40н	-
System reserved	48	30	ICR32	33 CH	000FFF3C	-
System reserved	49	31	ICR33	338	000FFF38н	-
System reserved	50	32	ICR34	334	000FFF34н	-
System reserved	51	33	ICR35	330н	000FFF30н	-
System reserved	52	34	ICR36	32 CH	000FFF2CH	-
System reserved	53	35	ICR37	328н	000FFF28н	-
System reserved	54	36	ICR38	324 ${ }^{\text {H }}$	000FFF24	-
System reserved	55	37	ICR39	320н	000FFF20н	-
System reserved	56	38	ICR40	31 CH	$000 \mathrm{FFF} 1 \mathrm{CH}^{\text {¢ }}$	-
System reserved	57	39	ICR41	318	000FFF18н	-
System reserved	58	3A	ICR42	314 H	000FFF14	-
System reserved	59	3B	ICR43	310н	000FFF10н	-
System reserved	60	3C	ICR44	30 CH	000FFFOCH	-
System reserved	61	3D	ICR45	308н	000FFF08н	-
System reserved	62	3E	ICR46	304 H	000FFF04н	-
Delay interrupt source bit	63	3 F	ICR47	300н	000FFFO0н	-
System reserved (Used by REALOS*)	64	40	-	2 FCH	000FFEFFC	-
System reserved (Used by REALOS*)	65	41	-	2F8H	000FFEF8н	-
System reserved	66	42	-	2F4 ${ }^{\text {H }}$	000FFEF4	-
System reserved	67	43	-	2 FOH	000FFEFOH	-

(Continued)
(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	Decimal	Hexadecimal				
System reserved	68	44	-	2 ECH	000FFEEC ${ }_{\text {H }}$	-
System reserved	69	45	-	2E8H	000FFEE8н	-
System reserved	70	46	-	2E4H	000FFEE4 ${ }_{\text {¢ }}$	-
System reserved	71	47	-	2 EOH	000FFEE0н	-
System reserved	72	48	-	2DCH	000FFEDC	-
System reserved	73	49	-	2D8н	000FFED8н	-
System reserved	74	4A	-	2D4	000FFED4 ${ }_{\text {¢ }}$	-
System reserved	75	4B	-	2DOH	000FFEDOH	-
System reserved	76	4C	-	2 CCH	000FFECCH	-
System reserved	77	4D	-	2С8н	000FFEC8 ${ }_{\text {- }}$	-
System reserved	78	4E	-	2С4	000FFEC4 ${ }_{\text {¢ }}$	-
System reserved	79	4F	-	2 COH	000FFECOH	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BC} \mathrm{H} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \mathrm{FFCOO} \end{aligned}$	-

(2) NMI (Non Maskable Interrupt)

NMIs have the highest priority among the interrupt sources handled by this module.
An NMI is always selected whenever other types of interrupt sources occur at the same time.

- If an NMI occurs, the interrupt controller passes the information to the CPU : Interrupt level : 15 (01111B) Interrupt number : 15 (00011118)
- NMI detection

NMIs are set and detected by the external interrupt/NMI controller. This module only generates an interrupt level, interrupt number, and MHALTI upon NMI request.

- Suppressing DMA transfer upon NMI request When an NMI request occurs, the MHALTI bit in the HRCL register is set to " 1 ", suppressing DMA transfer. To permit DMA transfer, clear the MHALTI bit to "0" at the end of the NMI routine.

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter		Symbol	Rating		Unit	Remarks	
		Min	Max				
Power supply voltage*1	I/O		Vdde	VSS - 0.3	VSS + 4.0	V	
	Internal	VDDI	VSS - 0.3	VSS + 2.5	V		
Analog power supply voltage		PLLVDD	VSS-0.3	VSS + 4.0	V	*2	
Input voltage*1		V_{1}	VSS-0.3	VDDE + 0.3	V		
Output voltage*1		Vo	VSS - 0.3	VDDE + 0.3	V		
"L" level maximum output current		loz	-	T.B.D	mA	*3	
"L" level average output current		lolav	-	T.B.D	mA	*4	
"L" level total maximum output current		Σ lob	-	T.B.D	mA		
"L" level total average output cur rent		Σ lolav	-	T.B.D	mA	*5	
"H" level maximum output current		Іон	-	T.B.D	mA	*3	
"H" level average output current		lohav	-	T.B.D	mA	*4	
"H" level total maximum output current		Σ Іон	-	T.B.D	mA		
"H" level total average output cur rent		Σ Іона⿱	-	T.B.D	mA	*5	
Power consumption		Po	-	T.B.D	mW		
Operating temperature		Ta	-10	70	${ }^{\circ} \mathrm{C}$		
Storage temperature		Tstg	- 55	150	${ }^{\circ} \mathrm{C}$		

*1: This parameter is based on VSS $=$ PLLVSS $=0 \mathrm{~V}$.
*2 : Note that analog power supply voltage and input voltage do not exceed VDDE +0.3 V at power on.
*3 : The maximum output current is the peak value for a single pin.
*4: The average output current is the average current for a single pin over a period of 100 ms .
*5 : The total average output current is the average current for all pins over a period of 100 ms .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Notes: • Apply equal potential to all of the VDDE pins.

- Apply equal potential to all of the VDDI pins.
- Fix all of the VSS pins at 0 V .
- Leave N.C. pins open.

2. Recommended Operating Conditions

$$
(\text { VSS }=\text { PLLVSS = } 0 \text { V) }
$$

Parameter		Symbol	Value			Unit
			Typ	Max		
Power supply voltage	I / O	VDDE	3.0	3.3	3.6	V
	Internal	VDDI	1.65	1.8	1.95	V
Analog power supply voltage	PLLVDD	VSS +3.0	-	VDDE 2	V	
Operating temperature	Ta	-10	-	70.0	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

- Other than USB

Parameter	Symbol	Pin	Conditions	Value			Unit
				Min	Typ	Max	
"H" level input voltage	V_{H}	-	-	2.0	-	VDDE +0.3	V
"L" level input voltage	VIL	-	-	VSS - 0.3	-	0.8	V
"H" level output voltage	Vон	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DDE}}=3.0 \mathrm{~V}, \\ & \mathrm{IOH}=4.0 \mathrm{~mA} \end{aligned}$	VDDE - 0.5	-	-	V
"L" level output voltage	VoL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DDE}}=3.0 \mathrm{~V}, \\ & \mathrm{IOH}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V
Input leak current	lı	-	$\begin{aligned} & V_{D D E}=3.6 \mathrm{~V}, \\ & V_{S S}<V_{1}<V_{D D E} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$
Pull-up resistance	Rpulu	TCK/TRST/TMS/ TDI/TDO/ CFCD2X/ CFCD1X/ CFVS1X/CFRDY/ CFWAITX	-	10	33	80	$\mathrm{k} \Omega$
Pull-down resistance	Rpuld	CFRESET	-	10	33	80	$\mathrm{k} \Omega$
Power supply current	Icc	VDDE	$\begin{aligned} & \mathrm{VDDI}=1.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V}, \\ & \mathrm{fC}=50 \mathrm{MHz} \end{aligned}$	-	-	T.B.D	mA
		VDDI		-	-	T.B.D	mA
Input capacitance	Cin	Without power supply	-	-	18	-	pF

- USB
(VSS = PLLVSS = 0 V)

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	-	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	VDDE-0.2	-	VDDE	V	
"L" level output voltage	Vol	-	$\mathrm{loL}=100 \mu \mathrm{~A}$	0	-	0.2	V	
"H" level output current	Іон	-	V OH $=\mathrm{V}_{\text {die }}-0.4 \mathrm{~V}$	-20	-	-	mA	
"L" level output current	lob	-	$\mathrm{VoL}=0.4 \mathrm{~V}$	20	-	-	mA	
output short circuit current	los	-	-	-	-	300	mA	*1
Input leak current	Izz	-	-	-	-	± 5	$\mu \mathrm{A}$	*2

*1: <About the output short-circuit current>
Output short-circuit current los is the maximum current that flows when the output pin is connected to VDDE or Vss (within the maximum rating). The current is "the short-circuit current per differential output pin." As the USB I/O buffer is a differential output, the short-circuit current should be considered for both of the output pins.

3-State Enable "L"

3-State Enable "L"
*2: <About Measurement of Z leakage current lız>
Input leakage current ILz is measured with the USB I/O buffer in the high-impedance state when the VDDE or Vss voltage is applied to the bidirectional pin.

[^0]USB Specification Revision 1.1

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Input Levels					
High (driven)	V_{H}	2.0	-	V	${ }^{*} 1$
Low	VIL	-	0.8	V	${ }^{*} 1$
Diffential Input Sensitivity	Voi	0.2	-	V	*2
Differential Common Mode Range	V cm	0.8	2.5	V	*2
Output Levels					
High (driven)	Vон	0.0	0.3	V	*3
Low	VoL	2.8	3.6	V	*3
Output Signal Crossover Voltage	$V_{\text {crs }}$	1.3	2.0	V	* 4
Terminations					
Bus Pull-up Resistor on Upstream Port	Rpu	1.425	1.575	k Ω	$1.5 \mathrm{k} \Omega \pm 5 \%$
Termination Voltage for Upstream Port Pull-up	$V_{\text {term }}$	3.0	3.6	V	*5

*1: <Input Levels VIH, VIL>
The switching threshold voltage of the USB I/O buffer's single-end receiver is set within the range from
$\mathrm{V}_{\mathrm{IL}(\text { max })}=0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{H}(\text { (Min) })}=2.0 \mathrm{~V}$ (TTL input standard).
For $\mathrm{V}_{\text {IH }}$ and V_{IL}, the LSI has some hysteresis to reduce noise susceptibility.
*2 : <Input Levels VDI, Vсм>
A differential receiver is used to receive USB differential data signals.
The differential receiver has a differential input sensitivity of 200 mV when the differential data input falls within the range from 0.8 V to 2.5 V with respect to the local ground reference level.
The above voltage range is referred to as common-mode input voltage range.

*3: <Output Levels Vol, Voh>
The output driving performance levels of the driver are 0.3 V or less (to $3.6-\mathrm{V}, 1.5 \mathrm{k} \Omega$ load) in the low state (VoL) and 2.8 V or more (to ground, $1.5 \mathrm{k} \Omega$ load) in the high state (V_{OH}) .
*4 : <Output Levels Vcrs>
The cross voltage of the external differential output signals ($\mathrm{D}+$ and $\mathrm{D}-$) falls within the range from 1.3 V to 2.0 V .

*5: <Terminations $V_{\text {TERM }}>$
$V_{\text {term }}$ indicates the pull-up voltage at the upstream port.

4. AC Characteristics

The following measurement conditions depending on the supply voltage apply to the MB91401 unless otherwise specified.

- AC measurement condition

V_{IH}	$\mathrm{V}_{\text {DDE }} \times 0.8$	VOH	$\mathrm{V}_{\mathrm{DDE}} / 2$
$\mathrm{~V}_{\mathrm{IL}}$	$\mathrm{V}_{\text {DDE }} \times 0.2$	VoL	$\mathrm{V}_{\mathrm{DDE}} / 2$

- Load condition

(1) Clock

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
Input clock frequency	Fclkcyc	XINI	External clock	10.0	50.0	MHz	
	Fclkcyc	OSCEA, OSCEB	Oscillation	10.0	50.0	MHz	
Internal operating clock frequency (FR70E/peripheral module)	Fclkin	-	-	-	50.0	MHz	$*$
Internal operating clock frequency (USBC)	Fusop	-	-	-	48.0	MHz	
Internal operating clock frequency (I2C IF)	Fi2op	-	-	-	12.5	MHz	
External memory clock frequency	-	MCLKO	-	-	50.0	MHz	

* : The clock frequency must be set to over 25 MHz for the Ethernet MAC interface to perform 100 Base communication.

(2) Reset

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
					Min	Max		
Reset input time	trst	INITXI	After power supply \& input clock stabilization	At unusing of PLL	5 tcp	-	ns	
				At using of PLL	$600+1$	-	$\mu \mathrm{s}$	
PLL reset input time	tprst\|	PLLS		At using of PLL	1	-	$\mu \mathrm{s}$	

Note : tcp is internal CPU and clock cycle period for peripheral module.

(3) Normal memory access

Parameter	Symbol	Pin	Typical timing	Value		Unit	Remarks
				Min	Max		
Address delay time	tchav	A23 to A0	MCLKO \uparrow	0	tcycp $/ 2+7$	ns	
CSX delay time	tchcsl	CSX2 to CSX0	MCLKO \uparrow	0	tcycp $/ 2+7$	ns	
CSX delay time	tchcsh	CSX2 to CSX0	MCLKO \uparrow	0	tcycp $/ 2+7$	ns	
WRX delay time	tchwrl	WRX3 to WRX0	MCLKO \uparrow	-1	9	ns	
WRX delay time	tchwrh	WRX3 to WRX0	MCLKO \uparrow	-1	9	ns	
Data delay time	tchdv	D31 to D0	MCLKO \uparrow	0	tcycp $/ 2+7$	ns	
RDX delay time	tchrdl	RDX	MCLKO \uparrow	-1	9	ns	
RDX delay time	tchrdh	RDX	MCLKO \uparrow	-1	9	ns	
Data setup	tdsrh	D31 to D0	MCLKO \uparrow	19	-	ns	
Data hold	trhdx	D31 to D0	MCLKO \uparrow	-1	-	ns	

Note : tcycp is external memory clock cycle period.

(4) Ready input

Parameter	Symbol	Pin	Typical timing	Value		Unit	Remarks
				Min	Max		
RDY setup	trdys	RDY	MCLKO \uparrow	19	-	ns	
RDY hold	trdyh	RDY	MCLKO \uparrow	-1	-	ns	

(5) UART

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK1, SCK0	Internal shift clock mode	$8 \times$ timcycp	-	ns	
$\begin{aligned} & \text { SCLK } \downarrow \rightarrow \\ & \text { SOUT delay time } \end{aligned}$	tslov	SOUT1, SOUT0		-80	80	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCLK } \uparrow \end{aligned}$	tivsh	SIN1, SIN0		100	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	SIN1, SIN0		60	-	ns	
Serial clock "H" Pulse Width	tshsl	SCK1, SCK0	External shift clock mode	$4 \times$ timcycp	-	ns	
Serial clock "L" Pulse Width	tslsh	SCK1, SCK0		$4 \times$ timcycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tslov	SOUT1, SOUT0		-	150	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCLK } \uparrow \end{aligned}$	tivsh	SIN1, SIN0		60	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	SIN1, SIN0		60	-	ns	

Note : timcycp is operational clock period of peripheral module built-in FR70E core.

- Internal shift clock mode

- External shift clock mode

(6) MII interface

Parameter	Symbol	Pin	Typical timing	Value		Unit	Remarks
				Min	Max		
TXEN delay time	tdel_txen	TXEN	TXCLK \uparrow	0	15	ns	
TXD delay time	tdel_txd	TXD3 to TXD0	TXCLK \uparrow	0	15	ns	
RXDV setup time	tsu_rxdv	RXDV	RXCLK \uparrow	2	-	ns	
RXSV Hold Time	thd_rxdv	RXDV	RXCLK \uparrow	3	-	ns	
RXD setup time	tsu_rxd	RXD3 to RXD0	RXCLK \uparrow	2	-	ns	
RXD Hold Time	thd_rxdv	RXD3 to RXD0	RXCLK \uparrow	3	-	ns	
RXERsetup time	tsu_rxer	RXER	RXCLK \uparrow	2	-	ns	
RXER Hold Time	thd_rxer	RXER	RXCLK \uparrow	3	-	ns	

- Transmission

- Reception

(7) MDIO interface

Parameter	Symbol	Pin	typical timing	Value		Unit	Remarks
MDIO setup time	tsu_mdio	MDIO	MDCLK \uparrow	10	-	ns	
MDIO Hold Time	thd_mdio	MDIO	MDCLK \uparrow	0	-	ns	
MDIO delay time	tdel_mdio	MDIO	MDCLK \uparrow	10	30	ns	
MDIO switching time (IN \rightarrow OUT)	tdeI_turnon	MDIO	MDCLK \uparrow	10	30	ns	
MDIO switching time (OUT \rightarrow IN $)$	tdeI_turnoff	MDIO	MDCLK \uparrow	10	30	ns	

(8) External IF

- Read access

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
EX Read Cycle time	texrc	EXA, EXCSX	$6 \times$ tcp	-	ns	
EXA to Data Valid	texadv	EXA, EXD	$5 \times$ tcp	-	ns	
EXCSX to Data Valid	texcsdv	EXCSX, EXD	$5 \times$ tcp	-	ns	
EXRDX to Data Out Enable	texdoe	EXRDX, EXD	$5 \times$ tcp	-	ns	
EXRDX "H" to High Z	texdhz	EXRDX, EXD	-	$5 \times \mathrm{tcp}+8$	ns	

Note : tcp is internal CPU and operational clock period for peripheral module.
EXA

- Write access

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
EX Write Cycle time	texwc	EXA, EXCSX	$5 \times \mathrm{tcp}$	-	ns	
EXA to Data Setup time	texads	EXA, EXD	$4 \times$ tcp	-	ns	
EXCSX to Data Setup time	texcsds	EXCSX, EXD	$4 \times \mathrm{tcp}$	-	ns	
EXWRX "L" Pulse width	texwp	EXRDX, EXD	$4 \times \mathrm{tcp}$	-	ns	
EXD Setup time	texds	EXRDX, EXD	11	-	ns	
EXD Hold time	texdh	EXRDX, EXD	0	-	ns	

Note : tcp is internal CPU and operational clock period for peripheral module.
EXA
(9) USB interface

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Input clock	tucyc	UCLK48	-	48*1	-	MHz	2500ppm accuracy*1
RISE Time	tutfr	UDP, UDM	4	-	20	ns	*2
Fall Time	tutff	UDP, UDM	4	-	20	ns	*2
Differential Rise and Fall Timing Matching	tutfrfm	UDP, UDM	90	-	111.11	\%	*2
Driver Output Resistance	tzdrv	UDP, UDM	28	-	44	Ω	*3

*1: The AC characteristics of the USB interface conform to USB Specification Revision 1.1.
*2 : <Driver Characteristics TFR, TFF, TFRFM>
These items specify the differential data signal rise (trise) and fall (tfall) times.
These are defined as the times between 10% to 90% of the output signal voltage.
For the full-speed buffer, trise and tfall are specified such that the tr/ff ratio falls within $\pm 10 \%$ to minimize RFI radiation.
*3: <Driver Characteristics ZDRV>
USB full-speed connection is performed via a shielded twisted-pair cable at a characteristic impedance of $90 \Omega \pm 15 \%$. The USB Standard stipulates that the USB driver's output impedance must be within the range of 28Ω to 44Ω. The USB Standard also stipulates that a discrete serial resistor (Rs) must be added to have balance while satisfying the above standard.
The output impedance of the USB I/O buffer on this LSI is about 3Ω to 19Ω. Serial resistor Rs to be added must be 25Ω to 30Ω (27Ω recommended) .
Capacitor CL of 50 pF must be added as well.

Notes: • Driver output impedance 3Ω to 19Ω

- Rs series resistance: 25Ω to 30Ω
- Add a series resistor of preferably 27Ω
(10) $\mathrm{I}^{2} \mathrm{C}$ interface
- Input timing specification

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
SDA input setup time	ts2sdai	SDA	250		ns	$*$
SDA input hold time	th2sdai	SDA	0	-	ns	$*$
SCL cycle time	tcscli	SCL	10	-	$\mu \mathrm{s}$	$*$
SCL input "H" pulse time	twhscli	SCL	4	-	$\mu \mathrm{s}$	$*$
SCL input "L" pulse time	twlscli	SCL	4.7	-	$\mu \mathrm{s}$	$*$
SCL input setup time	ts2scli	SCL	4	-	$\mu \mathrm{s}$	$*$
SCL input hold time	th2scli	SCL	4.7	-	$\mu \mathrm{s}$	$*$

* : Initial Value : ${ }^{2} \mathrm{C}$ bus standards.

- Output timing specification

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
SCL output cycle time	tcsclo	SCL	$(2 \times \mathrm{m})+2$	-	PCLK	${ }^{*}$
SCL output "H" Pulse Time	twhsclo	SCL	$\mathrm{m}+2$	-	PCLK	${ }^{*}$
SCL output "L" Pulse Time	twlsclo	SCL	m	-	PCLK	${ }^{*}$
SCL output setup time	ts2sclo	SCL	$\mathrm{m}+2$	-	PCLK	${ }^{*}$
SCL output hold time	th2sclo	SCL	$\mathrm{m} \times 2$	-	PCLK	${ }^{*}$
SDA output hold time	th2sdao	SDA	5	-	PCLK	${ }^{*}$

* : For value m, refer to Section 7.5.2.3 "Clock Control Register (CCR) in the ${ }^{2} \mathrm{C}$ Interface Specifications." PCLK indicates $I^{2} \mathrm{C}$ interface operating clock frequency.

(11) Card IF

- Read access

Parameter	Symbol	Pin	Value		Unit	Remarks
		tcfrc	$\begin{array}{l}\text { CFA10 to CFA0, } \\ \text { CFCE2X, CFCE1X }\end{array}$	-		ns

- Write access

Parameter	Symbol	Pin	Value		Unit	Remarks
		Min	Max			
CF Write Cycle time	tcfwc	CFA10 to CFA0, CFCE2X, CFCE1X	-	-	ns	
CFA to Data Setup time	tcfads	CFA10 to CFA0, CFD15 to CFD0	-	-	ns	
CFCEX to Data Setup time	tcfceds	CFCE2X, CFCE1X, CFD15 to CFD0	-	-	ns	
CFWEX CFIOWRX "L" Pulse width	tcffwp	CFWEX, CFIOWRX	-	-	ns	
CFD Setup time	tcfds	CDWEX, CFIOWRX, CFD15 to CFD0	-	-	ns	
CFD Hold time	tcfdhz	CDWEX, CFIOWRX, CFD15 to CFD0	-	-	ns	

CFOEX, CFIORDX

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91401	240-pin plastic FBGA (BGA-240P-M01)	

PACKAGE DIMENSION

© 1999 FUJITSU LIITTED B240001S-2C-2
Dimensions in mm (inches).
Note : The values in parentheses are reference values.

MEMO

FUJITSU LIMITED

For further information please contact: Japan
FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94088-3470, U.S.A.
Tel: +1-408-737-5600
Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. \#05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: 3-State Enable "H"

